Syntheses and some properties of new nickel fluorides B. Žemva a,*, L. Chacon b, K. Lutar a, C. Shen b, J. Allman b, N. Bartlett b ^a Jožef Stefan Institute, University of Ljubljana, 61000 Ljubljana, Slovenia ^b Chemical Science Division, Lawrence Berkeley Laboratory and Department of Chemistry, University of California, Berkeley, CA 94720, USA Keywords: Syntheses; Nickel fluorides; Oxidizing agents; Fluorinating agents; Magnetic properties; Crystal structures Nickel tetrafluoride is obtained as a light brown solid by precipitation from solution of NiF₆²⁻ salts in anhydrous hydrogen fluoride (AHF) by fluoride ion acceptors at ≤ -65 °C. Detectable F₂ release from dry NiF_4 is observed above -55 °C, but the rate of decomposition is slow and even at 18 °C takes nearly 100 h to transform to NiF₃. In liquid AHF, the decomposition of NiF₄ is more rapid at any temperature than when dry. Precipitation of nickel fluoride from K₂NiF₆ in liquid AHF at ≤0 °C yields black rhombohedral nickel trifluoride (R-NiF₃, $a_0 = 5.16$ Å; $\alpha = 55.7^{\circ}$; Z = 2) but if the precipitation occurs at ca. 18 °C, the dominant phase is the hexagonal tungsten bronze material, H-NiF₃ $(a_0 = 7.10 \text{ Å}; c_0 = 7.19 \text{ Å}; Z = 6)$, which is nearly black, with a deep red reflectance. R-NiF₃ decomposes slowly $(NiF_3 \rightarrow NiF_2 + 1/2F_2)$ in liquid AHF at room temperature. H-NiF₃ decomposes similarly, but more slowly. Warmed dry NiF₄ (studied at 18 °C and above) yields a cubic, pyrochloric material (C-NiF₃, with $a_0 = 9.96$ \dot{A} , Z = 8). An alternative route to the synthesis of NiF₃ (R-or H-) which lends itself to bulk production of the material, is via the interaction of NiF₆²⁻ salts with Ni²⁺ salts, each dissolved separately in AHF. In harmony with the thermodynamic instability of all forms of NiF₃, these fluorides are powerful oxidizing and fluorinating agents. R-NiF₃ is the most reactive and as a solid at room temperature oxidizes xenon (ultimately to XeF₆), perfluoropropene to perfluoropropane, and in a highly exothermic reaction, LiCl liberates Cl₂. Even at -60 °C dry acetonitrile burns in contact with R-NiF₃. H-NiF₃ and C-NiF₃ react less violently as free solids and this may be due to some reduction of the nickel in these open channel fluorides as a consequence of cation incorporation (e.g. K_x NiF₃ with $x \ll 0.2$). In all three NiF₃ structures, Ni atoms are at the center of an octahedral arrangement of six F ligands. In R-NiF₃, the F ligands are in a nearly ideal hexagonal close-packed array, ABAB..., with one-third of the octahedral holes occupied in an ordered manner by Ni atoms. The formula unit volume $(V/Z = 43.8 \text{ Å}^3)$ is the smallest of any trifluoride of the first transition series. This is indicative of the high effective nuclear charge at nickel and is in accord with the high oxidizing power of NiF₃. The magnetic properties of R-NiF₃ indicate a formulation Ni^{II}Ni^{IV}F₆ with high spin d⁸ Ni^{II} and low spin d⁶ Ni^{IV}. Below ca. 220 K, the material exhibits field dependence of the magnetic moment, indicative of ferromagnetic superexchange. The H-NiF₃ structure $(V/Z = 52.3 \text{ Å}^3)$ is less close-packed than R-NiF₃. This is a consequence of the formation of open hexagonal channels (parallel to c_o) caused by the tighter clustering of the apex-shared octahedra in the H-NiF₃ form. The apex sharing, via Ni-F-Ni bridges involves six-membered rings in the H-NiF₃ form versus eight-membered rings in the F-ligand close-packed structure of R-NiF₃. In C-NiF₃, the NiF₆ octahedra are in tetrahedral clusters (again involving six-membered ·· Ni-F-Ni-F·· rings) which results in even more hexagonal channels, now directed along all threefold axes of the cubic unit cell. As a result, the formula unit volume $(V/Z = 61.8 \text{ Å}^3)$ is 18 Å^3 larger than that for the close-packed R-NiF₃ structure. This difference in volume is approximately that of a F ligand. Thus C-NiF₃ has a formula unit volume akin to that expected for its NiF₄ precursor. ## Acknowledgments The work carried out at Berkeley was supported by the Director, Office of Energy Research, Office of Basic ^{*} Corresponding author. Energy Sciences, Chemical Sciences Division of the US Department of Energy under Contract Number DE-AC03-76SF00098. The work carried out at the Jožef Stefan Institute was supported by the Ministry of Science and Technology of the Republic of Slovenia. Additional support was provided by the US/Slovene Joint Fund for Scientific and Technological Cooperation, in association with the National Science Foundation under Grant No. JF947. L.C. is grateful to NPSC for a fellowship.